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Abstract

A modeling method for the modal analysis of cantilever plates undergoing accelerated in-plane motion is presented in

this paper. Von Karman strain measures are employed to derive the in-plane and the lateral equations of motion. In-plane

strain measures of the accelerated plates are obtained from the in-plane equations and substituted into the lateral equations

to obtain the linear equations for modal analysis. The resulting equations are transformed into dimensionless forms in

which dimensionless parameters are identified. The effects of dimensionless parameter variations on the modal

characteristics of the accelerated plates are investigated through numerical studies.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Flexible cantilever plate-like structures undergoing translational rigid body motion can be found in
practical engineering examples such as aircraft wings and rocket fins. For the design of these structures, their
modal characteristics are frequently obtained under the assumptions that the structures are stationary. Even if
the structures undergo translational motions with constant velocity, their modal characteristics remain the
same as those of the stationary structures. However, the structures often undergo accelerated motions that
could result in significant variations of their modal characteristics. For instance, when an aircraft or a rocket
takes off, their wings or fins undergo accelerated motion. Such an accelerated motion induces in-plane strains
(due to inertia force) for the plate-like structures that effectively cause the variations of their modal
characteristics. Since the take-off stage is critically important for the successful flight of the aircraft or the
rocket, the modal characteristics of the plate-like structures (such as wings and fins) undergoing accelerated in-
plane motions need to be estimated accurately and efficiently.

The modal characteristics of plates were previously studied by many researchers (see, for instance,
Ref. [1]). The in-plane motion has also been studied by 3D analysis (see, for instance, Refs. [2–4]). However,
study on the modal characteristics of a flexible structure undergoing rigid body motion originates
from the famous paper written by Southwell and Gough [5]. Basing on this pioneering study,
many researchers provided early analytical grounds on the subject (see, for instance, Refs. [6,7]). Since
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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1970s, owing to the fast progress of computing technologies, a large number of numerical studies
(see, for instance, Refs. [8–10]) followed. In most of the studies, however, flexible structures were
idealized as beams. Even if a large number of studies on plate structures exist, only a few of them
treat the modal characteristics of plates undergoing rigid body motions. Dokainish and Rawtani [11]
employed a finite element method to determine the natural frequencies and the mode shapes of a
cantilever plate mounted on a rotating disc. The in-plane stresses are first determined and the increase
in the bending stiffness due to the in-plane stresses is obtained to calculate the modal characteristics
of the rotating plate. Ramamurti and Kielb [12] extended the previous work to find the modal charact-
eristics of rotating twisted plates. More recently, a linear modeling method employing hybrid deformation
variables is proposed by Yoo and Kim [13] to find the modal characteristics of rotating cantilever plates.
The Rayleigh–Ritz assumed mode method is employed for the modeling method. Yoo et al. [14]
applied the modeling method to find the modal characteristics of rotating composite plates, too. Even if
modal characteristics of plates undergoing rotational motions were investigated in the previous studies, those
of plates undergoing accelerated in-plane motions have never been studied so far in spite of the practical
importance of the subject.

The purpose of the present study is to propose a modeling method by which the modal characteristics
(natural frequencies and mode shapes) of plates undergoing accelerated in-plane motions can be estimated
accurately. The effects of aspect ratio and dimensionless acceleration on the modal characteristics (natural
frequencies and mode shapes) of the accelerated plate will be exhibited and discussed through numerical
studies. Some conclusions will be drawn from the numerical results for practical designs of plate-like structures
undergoing accelerated in-plane motions.

The accuracy of the proposed modeling method is verified by comparing the numerical results
obtained by the proposed modeling method and the finite element method. To obtain the numerical
results obtained by the finite element method, the in-plane accelerated motion needs to be replaced by a
gravitational field and a nonlinear static analysis should be performed first. The linear modal analysis
should be followed to obtain the modal characteristics of the plate. The procedure of employing the
finite element method is not as simple as the proposed method. Furthermore, the modeling method
proposed in this study employs less degrees of freedom (dof) so that it can be effectively employed for the
control of the structure.
2. Formulation for the modal analysis

Fig. 1 shows a cantilever plate that is characterized by length a, width b, and thickness h. The plate is
attached to a rigid base A that undergoes accelerated in-plane motion. An orthogonal unit vector triad
ðâ1; â2; and â3Þ that is fixed to the rigid base A constitutes a coordinate system. Point O represents the origin of
the coordinate system and point P represents a generic point which lies on the mid-plane of the plate. The
mass per unit area, the Poisson’s ratio, the Young’s modulus, and the shear modulus of the plate are denoted
by symbols r, n, E, and G, respectively.

The elastic displacement of the generic point P can be expressed by using the Cartesian deformation
variables u1, u2, and u3 as shown in Fig. 2. With the Rayleigh–Ritz assumed mode method being employed, the
Cartesian deformation variables u1, u2, and u3 can be approximated as follows:

u1ðx; y; tÞ ¼
Xm1
i¼1

f1iðx; yÞq1iðtÞ, (1)

u2ðx; y; tÞ ¼
Xm2
i¼1

f2iðx; yÞq2iðtÞ, (2)

u3ðx; y; tÞ ¼
Xm3
i¼1

f3iðx; yÞq3iðtÞ, (3)
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Fig. 2. Deformation variables of a generic point on the mid-plane of a plate.
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where m1, m2, and m3 are the numbers of generalized coordinates for the deformation variables u1, u2, and u3,
respectively.

To derive the equations of motion for a cantilever plate, the following strain energy expression based on
Von Karman strain measures is employed.

U ¼ Ub þU st þU sh, (4)

where

Ub ¼
1

2

Z a

0

Z b

0

Eh3

12ð1� n2Þ
q2u3

qx2

� �2

þ
q2u3

qy2

� �2

þ 2n
q2u3

qx2

� �
q2u3

qy2

� �
þ 2ð1� nÞ

q2u3

qx qy

� �2
" #

dydx, (5)
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Ust ¼
1

2

Z a

0

Z b

0

Eh

ð1� n2Þ

qu1
qx

� �2
þ �xx

qu3
qx

� �2
þ qu2

qy

� �2
þ �yy

qu3
qy

� �2
þ2n qu1

qx

� � qu2
qy

� �
þ 1

2
�xx

qu3
qy

� �2
þ 1

2
�yy

qu3
qx

� �2� �
2
664

3
775dydx, (6)

Ush ¼
1

2

Z a

0

Z b

0

Gh
qu1

qx

� �2

þ 2
qu1

qy

� �
qu2

qx

� �
þ

qu1

qx

� �2

þ 2�xy

qu3

qx

� �
qu3

qy

� �" #
dydx, (7)

where Ub, Ust, and Ush denote the bending, the stretching, and the in-plane shear strain energies; and �xx, �yy,
and �xy denote the in-plane strains.

With the Kane’s method (see Ref. [15]) being employed, the equations of motion can be written as

Fi þ Fn

i ¼ 0 ði ¼ 1; . . . ; mÞ, (8)

where m is the total sum of m1, m2, and m3; and Fi and Fn
i can be obtained with

F i ¼ �
qU

qqi

, (9)

Fn

i ¼ �

Z a

0

Z b

0

r~vP
i ~a

P dydx, (10)

where qi consists of q1j, q2j, and q3j; ~v
P
i and ~aP denote the partial velocity and the acceleration of the point P.

The Kirchhoff’s assumptions are employed so that the transverse shear and the rotary inertia effects are
ignored in this study. The partial velocity of the point P can be easily obtained by differentiating the velocity
of P (with respect to _qi) that can be expressed as follows:

~vP
¼ ðvx þ _u1Þâ1 þ ðvy þ _u2Þâ2 þ _u3â3, (11)

where vx and vy denote the velocity components of the in-plane motion. Now employing Eqs. (4)–(11), the in-
plane equations of motion can be derived as follows:

Xm1
j¼1

Z a

0

Z b

0

rf1if1j dy dx

� �
€q1j þ

Z a

0

Z b

0

Eh

ð1� n2Þ
f1i;xf1j;x þ Ghf1i;yf1j;y

� �
dydx

� �
q1j

� �

þ
Xm2
j¼1

Z a

0

Z b

0

Eh

ð1� n2Þ
nf1i;xf2j;y þ Ghf1i;yf2j;x

� �
dy dx

� �
q2j

� �
¼ � _vx

Z a

0

Z b

0

rf1i dy dx

� �

ði ¼ 1; 2; . . . ; m1Þ, ð12Þ

Xm2
j¼1

Z a

0

Z b

0

rf2if2j dydx

� �
€q2j þ

Z a

0

Z b

0

Eh

ð1� n2Þ
f2i;yf2j;y þ Ghf2i;xf2j;x

� �
dydx

� �
q2j

� �

þ
Xm1
j¼1

Z a

0

Z b

0

Eh

ð1� n2Þ
nf2i;xf1j;y þ Ghf2i;yf1j;x

� �
dydx

� �
q1j

� �
¼ � _vy

Z a

0

Z b

0

rf2i dydx

� �

ði ¼ 1; 2; . . . ; m2Þ, ð13Þ

where a subscript following a comma indicates the partial differentiation with respect to the subscript.
For instance, fi,y denotes the partial derivative of fi with respect to y. If _vx and _vy are constant, the
steady-state solutions for q1i and q2i (denoted as q1i and q2i hereinafter) can be obtained from Eqs. (12)
and (13).
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After obtaining the steady-state solutions q1i and q2i, one can derive the constant in-plane strain measures
�xx, �yy, and �xy as follows:

�xx ¼
qu1

qx

� �
¼
Xm1
i¼1

f1i;xq1i,

�yy ¼
qu2

qy

� �
¼
Xm2
i¼1

f2i;yq2i,

�xy ¼
qu1

qy

� �
þ

qu2

qx

� �
¼
Xm1
i¼1

f1i;yq1i þ
Xm2
i¼1

f2i;xq2i. ð14Þ

Substituting Eq. (14) into the bending strain energy, the linear bending equations can be derived as follows:

Pm3
j¼1

R a

0

R b

0 rf3if3j dy dx
� �

€q3j

þ
R a

0

R b

0
Eh3

12ð1�n2Þ

f3i;xxf3j;xx þ f3i;yyf3j;yy þ nf3i;xxf3j;yy

þnf3i;yyf3j;xx þ 2ð1� nÞf3i;xyf3j;xy

 !
dy dx

 !
q3j

þ
R a

0

R b

0
Eh
ð1�n2Þ

�xxðf3i;xf3j;y þ nf3i;yf3j;yÞ

þ�yyðf3i;yf3j;y þ nf3i;xf3j;xÞ

 !
dydx

 !
q3j

þ
R a

0

R b

0 Gh�xyðf3i;yf3j;x þ f3i;xf3j;yÞdydx
� �

q3j

2
6666666666664

3
7777777777775
¼ 0

ði ¼ 1; 2; . . . ; m3Þ:

(15)

As shown in the third and the fourth lines in Eq. (15), extra bending stiffness terms appear due to the in-
plane strains induced by the accelerated in-plane motion. Therefore, as the acceleration varies, these terms
play important roles for the modal analysis of cantilever plates undergoing accelerated in-plane motion.

In order to rewrite Eq. (15) in a dimensionless form, the following dimensionless variables and parameters
are introduced.

t � t
T
; x � x

a
; Z � y

a
;

d � a
b
; s � a

h
; b ¼ Gð1�n2Þ

E
;

Waj �
qaj

a
; faiðx; yÞ � jaiðx; ZÞ;

(16)

where T is defined as

T �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ð1� n2Þra4

Eh3

s
. (17)

Using the dimensionless variables and parameters, a dimensionless form of Eq. (15) can be obtained as
follows:

Pm3
j¼1

R 1
0

R 1
0 j3ij3j dZdx

� �
€W3j

þ
R 1
0

R 1
0

d4j3i;ZZ j3j;ZZ þ 2nd2j3i;xx j3j;ZZ

þj3i;xx j3j;xx þ 2ð1� nÞd2j3i;xZ j3j;xZ

0
@

1
AdZ dx

0
@

1
AW3j

þ
R 1
0

R 1
0 12s2

�xxðj3i;x j3j;x þ d2nj3i;Z j3j;ZÞ

þ�yyðd
2j3i;Z j3j;Z þ nj3i;x j3j;xÞ

0
@

1
AdZdx

0
@

1
AW3j

þ
R 1
0

R 1
0 12s

2db�xyðj3i;Z j3j;x þ j3i;x j3j;ZÞdZdx
� �

W3j

2
666666666666664

3
777777777777775

¼ 0:

ði ¼ 1; 2; . . . ; m3Þ:

(18)
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The in-plane dimensionless static equations (which provide the dimensionless particular solutions of the
differential equations, Eqs. (12) and Eq. (13)) can be written as follows:

s2
Xm1
j¼1

Z 1

0

Z 1

0

ð12j1i;x j1j;x þ 12d2bj1i;Z j1j;ZÞdZdx
� �

W1j

� �

þ s2
Xm2
j¼1

Z 1

0

Z 1

0

ð12dj1i;x j2j;Z þ 12dbj1i;Z j2j;xÞdZdx
� �

W2j

� �

¼ �ax

Z 1

0

Z 1

0

j1i dZdx
� �

ði ¼ 1; 2; . . . ;m1Þ, ð19Þ

s2
Xm2
j¼1

Z 1

0

Z 1

0

ð12d2j2i;Z j2j;Z þ 12bj2i;x j2j;xÞdZdx
� �

W2j

� �

þ s2
Xm1
j¼1

Z 1

0

Z 1

0

ð12dj2i;x j1j;Z þ 12dbj2i;Z j1j;xÞdZdx
� �

W1j

� �

¼ �ay

1

d

Z 1

0

Z 1

0

j2i dZdx
� �

ði ¼ 1; 2; . . . ;m2Þ. ð20Þ

In the above equations

ax �
_vx

Ax

; ay �
_vy

Ay

, (21)

where

Ax ¼
a

T2
; Ay ¼

b

T2
. (22)

One can easily see that s2Wai which can be obtained from Eqs. (19) and (20) is independent of s. Since the in-
plane strain measures can be now obtained as

�xx ¼
Xm1
i¼1

f1i;xq1i ¼
Xm1
i¼1

j1i;xW1i,

�yy ¼
Xm2
i¼1

f2i;yq2i ¼
Xm2
i¼1

j2i;ZW2i,

�xy ¼
Xm1
i¼1

f1i;yq1i þ
Xm2
i¼1

f2i;xq2i ¼
Xm1
i¼1

j1i;ZW1i þ
Xm2
i¼1

j2i;xW2i. ð23Þ

s2�xx, s2�yy, and s2�xy are independent of s. Let’s introduce ~�xx, ~�yy, and ~�xy as follows:

~�xx ¼ s2�xx,

~�yy ¼ s2�yy,

~�xy ¼ s2�xy. ð24Þ
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Then Eq. (18) can be rewritten as follows:

Xm3
j¼1

R 1
0

R 1
0 j3ij3j dZdx

� �
€W3j

þ
R 1
0

R 1
0

d4j3i;ZZ j3j;ZZ þ 2nd2j3i;xx j3j;ZZ

þj3i;xx j3j;xx þ 2ð1� nÞd2j3i;xZ j3j;xZ

0
@

1
AdZdx

0
@

1
AW3j

þ
R 1
0

R 1
0 12

~�xxðj3i;x j3j;x þ d2nj3i;Z j3j;ZÞ

þ~�yyðd
2j3i;Z j3j;Z þ nj3i;x j3j;xÞ

0
@

1
AdZdx

0
@

1
AW3j

þ
R 1
0

R 1
0 12db~�xyðj3i;Z j3j;x þ j3i;x j3j;ZÞdZdx

� �
W3j

2
666666666666664

3
777777777777775

¼ 0. (25)
Table 1

Lowest five dimensionless natural frequencies obtained by the present method and a commercial finite element code with n ¼ 0:2; b ¼
0:4; d ¼ 1; ax ¼ 0

Acceleration Method Dimensionless natural frequencies

1st 2nd 3rd 4th 5th

ay ¼ 0 Present 3.5040 8.9438 21.768 27.660 32.113

ANSYS 3.4929 8.9291 21.727 27.559 32.064

ay ¼ 5 Present 3.4752 8.8908 21.742 27.622 32.144

ANSYS 3.4622 8.8773 21.697 27.516 32.082

ay ¼ 10 Present 3.3835 8.7319 21.661 27.513 32.233

ANSYS 3.3759 8.7170 21.629 27.393 32.167

Table 2

Lowest five dimensionless natural frequencies obtained by the present method and a commercial finite element code with n ¼ 0:3; b ¼
0:35; d ¼ 1; ax ¼ 0

Acceleration Method Dimensionless natural frequencies

1st 2nd 3rd 4th 5th

ay ¼ 0 Present 3.4767 8.5235 21.345 27.279 31.047

ANSYS 3.4720 8.5312 21.334 27.219 31.074

ay ¼ 5 Present 3.4464 8.4618 21.264 27.214 31.046

ANSYS 3.4399 8.4542 21.248 27.159 31.074

ay ¼ 10 Present 3.3365 8.3089 21.146 27.136 31.134

ANSYS 3.3393 8.2926 21.126 27.092 31.187

Table 3

Lowest five dimensionless natural frequencies obtained by the present method and a commercial finite element code with n ¼ 0:3; b ¼
0:35; d ¼ 2; ax ¼ 0

Acceleration Method Dimensionless natural frequencies

1st 2nd 3rd 4th 5th

ay ¼ 0 Present 3.4511 14.836 21.560 48.388 60.397

ANSYS 3.4406 14.824 21.452 48.314 60.242

ay ¼ 5 Present 3.4361 14.776 21.592 48.339 60.463

ANSYS 3.4294 14.771 21.498 48.276 60.383

ay ¼ 10 Present 3.3895 14.601 21.683 48.193 60.559

ANSYS 3.3821 14.593 21.597 48.123 60.482
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As can be observed from Eq. (25), the dimensionless modal characteristics of the cantilever plate undergoing
accelerated in-plane motion are related to the parameters of b and d. It can be also observed from Eqs. (19)
and (20) that the modal characteristics are affected by the dimensionless acceleration components ax and ay.
The parameter s, however, does not affect the dimensionless modal characteristics of the accelerated plate
since ~�ab’s are independent of s.

In the following section, Eq. (25) along with Eqs. (19)–(24) will be employed for the modal analysis of
cantilever plates undergoing accelerated in-plane motion. The effects of dimensionless acceleration
components ax and ay along with the dimensionless parameters b and d on the modal characteristics of the
accelerated plate will be investigated.
3. Numerical results

In this section, modal analysis results are obtained by employing the equations derived in the previous
section. The assumed mode functions for a cantilever plate are constructed by using cantilever beam functions
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Table 4

Lowest five dimensionless natural frequencies obtained by the present method and a commercial finite element code with n ¼ 0:3;
b ¼ 0:35; d ¼ 1; ay ¼ 0

Acceleration Method Dimensionless natural frequencies

1st 2nd 3rd 4th 5th

ax ¼ 0 Present 3.4767 8.5235 21.345 27.279 31.047

ANSYS 3.4720 8.5312 21.334 27.219 31.074

ax ¼ 3 Present 2.7236 8.2433 20.805 27.137 30.629

ANSYS 2.7201 8.2509 20.797 27.093 30.650

ax ¼ 6 Present 1.6427 7.9491 20.196 27.014 30.217

ANSYS 1.6392 7.9539 20.190 26.979 30.247
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and free-free beam functions. The beam mode functions are generated in polynomial forms by using the
Gram-Schmidt method. The detailed procedure to generate the mode functions is given in Refs. [16–18]. In the
present study, 5 cantilever beam functions and 7 free-free beam functions (including 2 rigid body mode
functions) are employed to generate 35 mode functions for the cantilever plate.

To verify the accuracy of the modal analysis results obtained by the present method, a commercial finite
element code (see Ref. [19]) was employed. Since it is not possible to prescribe an accelerated motion with the
commercial finite element code, a stationary plate undertaking a gravitational force is analyzed instead. To
create the same inertia force effect induced by an accelerated motion, an equivalent gravitational field is
applied to the stationary plate. By applying the artificial gravitational field to the plate, in-plane strains were
first obtained by using the nonlinear static analysis module of the commercial code. Then the modal
characteristics of the plate (with the in-plane strains) were calculated by using the modal analysis module of
the commercial code. With the commercial code, a finite element model having one hundred identical shell63
elements (number of nodes is 121 and the degree of freedom is 726) is employed. On the other hand, only
35 dof are employed for the present modeling method.
Fig. 4. Nodal line patterns of lowest five mode shapes with different accelerations ay ðd ¼ 1:0; b ¼ 0:35; n ¼ 0:3; ax ¼ 0Þ.
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Tables 1–4 show the lowest five dimensionless natural frequencies obtained by the present method and a
commercial finite element program. Different combinations of b, d, ax, and ay are employed for the tables. The
effects of the dimensionless acceleration (ax or ay) and parameters on the lowest five natural frequencies are
shown in the tables. As can be observed, the results obtained by the present method are in good agreement
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Fig. 5. Variations of the lowest five dimensionless natural frequencies versus dimensionless acceleration ay ðd ¼ 0:5; b ¼ 0:35;
n ¼ 0:3; ax ¼ 0Þ.
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with those obtained by the commercial code (the discrepancy between the two results is always less than
0.5%).

Fig. 3 shows the variations of the lowest five dimensionless natural frequencies versus the dimensionless
acceleration ay (when the dimensionless acceleration ax is equal to 0). The results obtained by the present
method are in good agreement with those obtained with the commercial finite element code. The parameters
employed for the analysis are as follows: d ¼ 1, n ¼ 0:3, and b ¼ 0:35. As shown in the figure, the lowest three
natural frequencies decrease as the dimensionless acceleration ay increases. Especially, the first natural
frequency becomes zero when the dimensionless acceleration ay is equal to 30. In other words, dynamic
buckling occurs if the dimensionless acceleration exceeds the value.

Fig. 4 shows the variations of the lowest five mode shapes of the plate. The dotted lines represent the nodal
lines of the mode shapes. The five modes (when ay ¼ 0) represent the first bending mode, the torsional mode,
the second bending mode, the chord-wise bending mode, and the combination mode, respectively. As shown in
the figures, when the cantilever plate is accelerated in Y-direction, all the symmetries of the nodal lines are
destroyed. The nodal line of the first mode (when ay ¼ 30) provides useful information about the dynamic
buckling mode of the accelerated plate.

Figs. 5 and 6 show the variations of the lowest five dimensionless natural frequencies versus the
dimensionless acceleration ay with aspect ratios d ¼ 0:5 and 2, respectively. All the other parameter values
employed to obtain the results are same as those to obtain the results of Fig. 3. The first natural frequency with
the aspect ratio d ¼ 0:5 decreases faster (comparing to the case of d ¼ 1) as the acceleration increases and the
dynamic buckling occurs faster, too. On the other hand, with the aspect ratio d ¼ 2, the first natural frequency
decreases slower and dynamic buckling occurs with a larger acceleration. Particularly note that the third
natural frequency (the second bending mode) increases rather than decreases in this case as the acceleration
increases.

Fig. 7 shows the variations of the lowest five dimensionless natural frequencies versus the dimensionless
acceleration ay with d ¼ 1, n ¼ 0:2, and b ¼ 0:4. All the other parameter values employed to obtain the results
are same as those to obtain the results of Fig. 3. As can be observed from this figure, the modal characteristics
of the plate change slightly. Dynamic buckling occurs with acceleration slightly larger than that shown in
Fig. 3.
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Fig. 7. Variations of the lowest five dimensionless natural frequencies versus dimensionless acceleration ay ðd ¼ 1:0; b ¼ 0:4; n ¼ 0:2;
ax ¼ 0Þ.
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Fig. 9. Variations of the lowest five dimensionless natural frequencies versus dimensionless acceleration ax ðd ¼ 2:0; b ¼ 0:35;
n ¼ 0:3; ay ¼ 0Þ.
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Fig. 8. Variations of the lowest five dimensionless natural frequencies versus dimensionless acceleration ax ðd ¼ 1:0; b ¼ 0:35;
n ¼ 0:3; ay ¼ 0Þ.
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Figs. 8–10 show the variations of the lowest five dimensionless natural frequencies versus the dimensionless
acceleration ax with aspect ratios d ¼ 1, 2, and 0.5. All the other parameter values employed to obtain the
results are same as those to obtain the results of Fig. 3. As shown in these figures, all the natural frequencies
decrease as the acceleration increases. Note also that the value of dynamic buckling acceleration decreases
slightly as the aspect ratio increases.
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Fig. 10. Variations of the lowest five dimensionless natural frequencies versus dimensionless acceleration ax ðd ¼ 0:5; b ¼ 0:35;
n ¼ 0:3; ax ¼ 0Þ.

Fig. 11. Nodal line patterns of lowest five mode shapes with different accelerations ax ðd ¼ 1:0; b ¼ 0:35; n ¼ 0:3; ay ¼ 0Þ.
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Fig. 12. Variations of the first dimensionless natural frequency versus dimensionless acceleration components ax and ay ðd ¼ 1:0;
b ¼ 0:35; n ¼ 0:3Þ.
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Fig. 11 shows the variations of the lowest five mode shapes of the plate that is accelerated in X-direction.
The dotted lines represent the nodal lines of the mode shapes. As shown in the figures, when the cantilever
plate is accelerated in X-direction, all the symmetries of the nodal lines are preserved. Different from the case
of being accelerated in Y-direction, the mode shapes do not change significantly.

Fig. 12 shows the variations of the first dimensionless natural frequency versus the dimensionless
accelerations ax and ay. All the other parameter values employed to obtain the results are same as those to
obtain the results of Fig. 3. As show in this figure, the natural frequency is more affected by the acceleration
component in X-direction than that in Y-direction.
4. Conclusion

In this study, dimensionless equations for the modal analysis of a rectangular plate undergoing accelerated
in-plane motion are derived. Employing the equations, it is shown that two dimensionless in-plane
acceleration components as well as the aspect ratio influence the dimensionless modal characteristics of the
plate significantly. Due to the in-plane strain induced by the accelerated motion, natural frequencies of the
plate usually decrease as the acceleration increases. It is exhibited that dynamic buckling (when the first
natural frequency becomes null) occurs when the acceleration components exceed some critical values. As the
aspect ratio decreases, the critical value for the acceleration component in Y-direction decreases significantly
while that in X-direction increases slightly. Incidentally, when the plate is accelerated in X-direction, the nodal
lines of mode shapes do not change significantly and preserve their symmetry. However, when it is accelerated
in Y-direction, they change significantly and loose the symmetry. In general, the X-direction acceleration
component affects the natural frequency variation more than the Y-direction acceleration component does.
Lastly, it is shown that the plate thickness ratio does not influence the dimensionless modal characteristics
while Poisson’s ratio does slightly.
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